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Fig.6. Liaisons hydrogénes intermoléculaires autour de I’axe
2 situé 3 x=0,5 et y=0,5. Les courbes de niveau dessinées
correspondent a la section paralléle a a,c¢, & la cote z=0,450
d’une série différence destinée a localiser les hydrogénes.
La premiére courbe correspond a une densité ¢électronique
de 0,1 e.A-3 et la deuxiéme 2 0,2 e.A-3.

Acta Cryst. (1972). B28, 3331

3331

References

ApSiMON, J. W. & EDWARDS, O. E. (1961). Canad. J. Chem.
39, 2543,

BASTIANSEN, O. (1949). Acta Chem. Scand. 3, 415.

BusiNG, W. R., MarRTIN, K. O. & Levy, M. A. (1962).
ORFLS. Report ORNL-TM-305, Oak Ridge National
Laboratory, Oak Ridge, Tennessee.

CocHRAN, W. (1953). Acta Cryst. 6, 260. .

CRUICKSHANK, D. W. J. (1956a). Acta Cryst. 9, 754.

CRUICKSHANK, D. W. J. (1956b). Acta Cryst. 9, 757.

CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.

EDpwarps, O. E., NIcOLSON, A. & RODGER, M. N. (1960).
Canad. J. Chem. 38, 663.

ESCANDE, A. (1971). Thése spécialité, Montpellier.

GERMAIN, G., MaIN, P. & WooLFsoN, M. M. (1970).
Acta Cryst. B26, 274.

GERMAIN, G. & WOOLFSON, M. M. (1968). Acta Cryst.
B24, 91,

HaupTMAN, M. & KARLE, J. (1953). Solution of the Phase
Problem. 1. The Centrosymmetric Crystal. A.C.A.
Monograph no. 3. Wilmington: The Letter Shop.

HoLt1zBerg, F., PosT, B. & FANKUCHEN, 1. (1953). Acta
Cryst. 6, 127.

HucHes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

JoNes, R. E. & TemMPLETON, D. H. (1958). Acta Cryst. 11,
484.

KARLE, J. (1968). Acta Cryst. B24, 182,

KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635.

KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849,

STERN, F. & BEEVERS, C. A. (1950). Acta Cryst. 3, 341.

TABACIK-WLOTZKA, C. & LAPORTHE, Y. (1968). Tetra-
hedron, 21, 2531.

WiLsoN, A. J. C. (1942). Nature, Lond. 150, 152.

Application of the Pair Relationships to the Structure Determination
of 9a-Fluorocortisol

BY CHARLES M. WEEKS AND HERBERT HAUPTMAN
Medical Foundation of Buffalo, 73 High Street, Buffalo, New York 14203, U.S.A.

(Received 12 May 1972)

The crystal structure of 9a-fluorocortisol (C,,H,sFOs; space group P2,2,2,) has been solved by a pro-
cedure which incorporates a number of direct-method techniques including, in particular, the recently
derived formulas for the cosines of those structure seminvariants, ¢, + ¢,, which are linear combinations
of two phases. These techniques yielded, with perfect accuracy, the values of 49 two-dimensional phases
which were used as input to the tangent formula. The initial £ map, based on the 250 tangent formula
phases, revealed 26 of the 27 nonhydrogen atoms in the structure.

1. Introduction

The values of the cosine invariants, as calculated from
normalized structure-factor amplitudes, may serve as
the basis for a program of phase determination. The
most widely used cosine invariants, cos (g, + Phy+ Pns)s

involve a linear combination of three phases subject
to the restriction that h;+h,+h;=0, and their values
are independent of the choice of origin and enantio-
morph and are uniquely determined by observed
structure-factor magnitudes alone. These cosine
Invariants, as computed by the modified triple product



3332

(Hauptman, Fisher, Hancock & Norton, 1969) and
MDKS formulas (Fisher, Hancock & Hauptman,
1970a,b; Hauptman, 19724a), have been used to solve
a number of structures (e.g. Weeks, Cooper, Norton,
Hauptman & Fisher, 1971 ; Duax, Weeks & Hauptman,
1972).

Although the values of all phases are fixed once the
origin and enantiomorph have been selected, it is not
always true that all phases are accessible through the
universal invariants, cos (¢, + ¢, -+ ¢s), alone (Haupt-
man, 1972a, Chapter I). In addition, the situation often
arises in which a given phase can be related to the
origin-specifying reflections, but one or more of the
intervening cosine invariants cannot be accurately
computed, and the phase in question cannot be found
reliably. In such cases, it is necessary to use certain
types of cosine seminvariants in order to find the un-
known phase. In contrast to the cosine invariants, the
values of the cosine seminvariants are uniquely deter-
mined by the observed structure factor magnitudes
provided that the functional form of the geometric
structure factor has been specified. Thus, the ccsiies
of individual phases which are structure seminvariants
may be computed using the space-group specific >,
formulas (Hauptman & Karle, 1953). If these auxiliary
formulas also fail to provide a path to an important
unknown phase, the latter may be assigned two or more
possible values and introduced into the set of known
phases as an ambiguity (Germain & Woolfson, 1968).
The structure will, presumably be found on a Fourier
map computed for a set of phases based on one of the
values of the ambiguous phase.

The coincidence method of Grant, Howells &
Rogers (1957) provided a means of relating the signs
of pairs of structure factors in centrosymmetric space
groups by utilizing suitable combinations of triple-
product sign relationships, each of which was known
with high probability. For example, if

S(h)S(h")~ Sth+h") (1.1a)
with probability P;, and
Sh)Sth’)~S(h—h") (1.18)
with probability P,, then
Sth+h)~Sth-h") (1.2)
with probability
P=2P P,—P,—P,+1, (1.3)

and no knowledge of S(h) or S(h’) is required. Recently
(Hauptman, 1971, 1972b) it has been found that the
relationships among pairs of phases which are related
as in equation (1.2) may be expressed in terms of formu-
las for the space-group dependent cosine seminvariants,
cos (¢, +@,). In these (so-called pair) formulas, the
cosine seminvariants are computed in terms of a
summation of the products of pairs of (|E|>—1) for all
pairs of reflections which are related to each of the
paired reflections in >, triples. The resulting summa-
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tions provide a stronger measure of the relationship
among such phases than can be obtained from the
single pair of relationships given in equations (1.1).

The pair formulas, like the >, formulas, may provide
a means of obtaining necessary phases which cannot
be reached through an analysis of the universal in-
variants cos (¢, +@,+@;) alone or through those
phase-determining formulas which relate triples of
reflections for which h, +h,+h;=0. Thus, they may be
useful in reducing the number of ambiguities which
must be introduced at the beginning of the phasing
procedure for an unknown structure. The use of the
pair formulas in this way is illustrated in this communi-
cation by their application to the unknown structure of
9a-fluorocortisol. It is not the intention of the authors
to claim that this structure could not have been solved
by some other direct-method approach, without
consideration of the pair formulas. However, use of the
pair formulas did eliminate the need for any ambi-
guities, and such procedures may become increasingly
important as the size of structures under consideration
and the resulting number of ambiguities necessary to
insure the solution of the structure increase.

2. Pair formulas

In space group P2,2,2,, two types of formulas exist
which allow the cosine seminvariants, cos (¢, +¢,),
where the phases ¢, and ¢, are both restricted to be
either 0 or @ or both restricted to be +nr/2, to be
computed from normalized structure-factor magni-
tudes alone. The detailed derivation of such formulas
has been presented elsewhere (Hauptman, 19724), and
only the results are summarized here. The first type of
formula, in the form applicable to 0k/ reflections, is

EoyiyEorat; = 1 Eoki11Eok1s] €08 (@okqiq + Pokary)
~ ]; ((=1)r+ 2t (1En, sk1 4420 21 412912 = 1)
X (| En, sx1 -2, 501 -1l = Du
= % (=120 Uy g s ks -2 = 1)

X (| En, 301 -k, 301 + 1l = D n 2.1

where k, + k,and /, + I, are even (i.e. k, and k, have the
same parity, and /; and /, have the same parity) and N
is the number of atoms, assumed identical to each
other, in the unit cell. Clearly, the contributions from
the two parts of this formula may be combined.
Analogous formulas for the A0/ and 4kO reflections
may be found through a cyclic permutation of the
indices. Because of the cumbersome notation occurring
in formulas of this sort, it is convenient to introduce the
notation h, =(0k,/)), h,=(0k,h), hy=[h,L(k,+k,), 3(/,
+0)] or [h,3(k,+k,), 3(h—1D)], hy=[h, §(k;—k)), 3(/,
—0b)] or [h, 3(ki—k,), 4(l,+1)], and Ey,,=E;, etc. In
the Type I formulas [equation (2.1)], reflections h; and
h, may be, and generally are, three-dimensional, but
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in the Type II formulas, of which is an example, reflections h;=[0, k, 3(/; +/,)] and h,=
[0, k+k,, 3(!,—1,)] [not to be confused with the h;

Eoi E =|Eokq1,E cos + . .
ouatsEoratz = ot Eo (@ots + Gokara) and h, used in (2.1)] always have at least one zero index.

~ N (= 1)+ ia=(|E 2=1) It is apparent that formulas of the second type are
3 0.k, +(11+12) . 5 h
applicable only to pairs, h; and h,, having a common
X (| Eo, k+ k1,301 -1l = Dk (2.2) nonzero component.

Table 1. Pairing of the two-dimensional reflections having |E|ops > 14

Obs |E,E,| Calc |E\E,| No.

Reflection 1 Reflection 2 *Cos (@1 — ¢2) *Cos (¢1— ¢2) ctr. s
0 16 2 0 18 2 -77 —144 18 11-8
0 16 2 0 16 4 —-53 —74 17 61
0 16 2 0 16 4 -53 -30 36 4-0*
0 18 2 0 16 4 45 68 19 59
0 22 1 0o 8 7 -39 —147 19 12-1
0 4 3 0 6 3 -39 —107 21 9-4
0 4 3 0 8 3 29 89 12 5-8%
0 4 3 0 26 3 4-4 —92% 11 5-9%
0 6 3 0 8 3 —2-6 —71 21 63
0 6 3 0 8 3 -26 74t 12 4-9%*
0 8 3 0 8 5 -3-0 -36 43 4-8%
0 8 3 0 8 7 2-8 37 41 4-7*
0 8 5 o 8 7 —4-4 —52 17 4-3
0 8 5 0 10 7 34 56 17 45
o 8 7 0 10 7 -32 -76 13 5-3
0 17 2 0 19 2 -36 —183 18 14-6
0 1 4 0 23 4 -30 —81 19 6-8
0 15 4 0 23 4 55 —55% 15 43
0 1 6 0 3 6 —4-8 —133 17 10-5
0 9 1 0 23 5 —2-4 —102 19 8-4
0 7 3 0 23 3 5-8 —148% 11 9-4*
0 11 5 0 13 5 3-0 145 10 8-6*
4 00 8 00 —-2-7 —268 25 25-0
5 01 7 01 —2-8 —66 48 89
7 01 9 01 —-25 —-33 41 4-2
3 03 5 03 -33 —41 51 5-8
4 00 4 20 0 2-6 131 9 7-4*
2 6 0 2 8 0 2-5 107 19 8-8*
2 60 2 18 0 -26 —65 18 5-3*
2 10 0 10 10 O 36 32 39 4-1*
6 10 0 10 10 O -35 —235 36 26-5%
6 10 0 6 12 0 —29 — 600 14 41-7*
6 10 0 10 12 0 2-8 633 13 424

10 10 O 6 12 0 2-8 633 13 42-4

10 10 0 10 12 O —26 —785 10 46-0*
6 12 0 10 12 O —2-2 —246 34 26-8*
6 12 0 6 14 0 24 80 13 5-5
4 20 O 6 20 0 2:2 86 11 5-4
2 10 6 1 0 —-12-6 —76 18 69
6 1 0 10 9 O 66 86 14 6-4
6 10 4 17 0 86 58 16 49
6 10 6 21 0 6-8 149 14 10-8*
8 9 0 8 11 0 -73 —360 13 24-5%
8 11 0 8 19 0 10-6 —1217 11 81
4 17 0 6 17 0 -52 —165 13 11-3
4 17 0 8 19 0 -53 —98 13 69
6 17 0 6 19 0 51 81 12 55
6 17 0 6 19 0 5-1 75 13 5-3*
7 40 5 60 3-0 —59% 16 4-6
5 60 5 10 0 31 94 17 74
5 10 0 7 12 0 5-9 334 15 24-3
7 20 0 7 22 0 —4-2 —273 _ 10 16-2*
1 11 0 1 13 0 —4-6 —479 19 39-0*
1 11 0 1 210 5-1 85 15 64
1 11 0 1 23 0 -37 —60 15 4:5
1 11 0 1 23 0 -37 -73 17 5-8%
1 13 0 1 21 0 —-35 —104 15 7-7
1 13 0 1 230 2'5 74 13 51
1 21 0 1 23 0 —-2:8 —265 13 17-8*

* Indicates that pair relation of Type II was used.
t Disagreement between observed and calculated |E; E,|* cos (@1 — ¢2).

AC28B-15
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The use of these formulas can be best understood
by considering examples, and some data for the pairs
between the strongest 9a-fluorocortisol two-dimen-
sional reflections are presented in Table 1. For example
the scaled average of the products of |E|2—1 for the
pairs of #,17,2 and 4,1,0 reflections and the pairs of
#,17,0 and A4,1,2 reflections yielded — 144 as the cal-
culated value of Ey,s,, Ey,s2, indicating that 0,16,2
and 0,18,2 have different phases. The quantity
[E\E,|* cos (¢, — ;) is tabulated rather than EE,=
|ELE,|* cos (¢, +¢,) of (2.1) and (2.2) because the
relationship between the two phases is immediatcly
apparent from the sign of the former. If this sign is
positive, the phases have the same value, but they
differ by 7 radians if the sign is negative. As can be
seen from Table 1, the magnitude of the calculated
product of the normalized structure-factor amplitudes
is quite different from the observed value. However,
this is not a scrious problem because it is known that
the phase of each of the paired reflections is restricted
to one of two possible values, and the pair formula is
only used to determine if these values are the same or
differ by = radians. The probability that the correct
relationship between the phases is the indicated one
increases as the absolute value of the calculated
product increases, and one measure of the reliability
of the relative phase indication is given by the signifi-
cance level,

s=2n*(obs|E,E,| +calc|E,E,))/N , (2.3)

where # is the number of contributors to the average
in equation (2.1) or (2.2), and N is the number of
atoms in the unit cell. From a study of the results of
the application of formulas of this type to the data for
several structures having 20-30 nonhydrogen atoms in
the asymmetric unit, it appears that the indicated
phase relationship is normally correct if s is four or
greater. Only those pairs having this minimum sig-
nificance level are included in Table 1. Inspection of the
table shows that only six of the fifty-nine pair relations
were incorrectly indicated. An asterisk beside the value
of s indicates that the figures were obtained from a
Type Il formula, and Type I formulas were used in
those cases where there is no asterisk.

The relationship of the pair formulas to the coin-
cidence method of Grant, Howells & Rogers (1957)
may be made clearer by examining the nature of the
individual contributors to the pair summations, and an
analysis of this type also hclps one to understand how
and when the pair formulas will give incorrect relative
phase indications. The case of 1,11,0 and 1,21,0 will be
considered as an illustration. The Type I summation
for these two reflections is over the products of
(IE1?—1)’s for the pairs of 1,5,/ and 0,16,/ reflections
and the pairs of 0,5,/ and 1,16,/ reflections. The paired
reflections 1,11,0 and 1,21,0 each form a triple of the
2, type with some symmetry variant of each 1,5,/ and
0,16,/ and with each 0,5,/ and 1,16,/. The largest con-
tributor to the summation occurs when hy=152 and
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h,=0,16,2, and the >, triples corresponding to this
contributor are given in Table 2.

Table 2. 3, triples corresponding to a large contributor
to the summation for the pair (1,11,0; 1,21,0)

h¢h; or hy) k(h; variant) -h-k(h, variant) A4*
1 21 0 T35 2 0 T6 2 2:17
1 11 0 T 5 2 0 16 2 2:86

* A=(2/N”2) lEhEkE—h-kl-

Itisconvenient tointroduce the notation cos (134) =cos
(@) + @nes+ ¢ns,) and cos (234) =cos (@n,+ Phey+ Eney)
where the asterisk indicates that symmetry variant of
the associated reflection needed to yield a structure
invariant. Owing to the space-group symmetries,
cos (134)= +cos (234). If p153=%, 015 2=F, ¥1 11 0=
@1, and @y 21 9=¢,, then

D=0 110t Pis2+Po153=01+a+f (2.4)
and
Q=01 200155 P15 2=+, (2.5)
It follows that
D=9, if p,=p, (2.6)
and
D =71+, if g,=n+0¢,. 2.7

Hence ¢,=¢, or ¢,=n+¢, according as cos @, =
cos @, or cos @, = —cos @,. (If cos @, = +cos &,~0,
no information is available.) If the 4 values for the two
triples are both large, as is true in this example, then
it is probable that both cosine seminvariants will have
rositive values and that the phase relationship as
indicated by equation (2.6), which agrees with the
overall indication from equation (2.1), will be correct.
Consistent with the pair equations (2.1) and (2.2) is
the assumption that the two cosine seminvariants
related to a single dominant contributor have the same
sign.f It is apparent then that the pair relationship will
fail in those cases where there is a single dominant
contributor, and that contributor has one positive and
one negative associated cosine seminvariant. Thus,
erroneous conclusions based on the pair formulas can
be avoided in large part by examining the large con-
tributors and checking the calculated values of their
cosines which are predicted by the modified triple-
product and MDKS formulas.

3. Application to 9a-fluorocortisol

9a-Fluorocortisol is a steroid containing 27 non-
hydrogen atoms which crystallizes in space group

t The same relationship between the paired phases is not
obtained from the sign of the individual contribution to the
pair summations {equations (2.1) and (2.2)] as is obtained from
the assumption of equal cosine seminvariants for the two re-
lated Z; triples in the case that either, but not both, of |Ensls
|Engl is less than unity. As an example, consider the contribu-
tion of 6,17,0 and 6,1,2 to the (0,16,2; 0,18,2) pair as given
in Table 4.
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P2,2,2, with one molecule per asymmetric unit in a cell
having the dimensions a=10-087, =23-710, and ¢=
7-660 A. The details of the structure refinement and
molecular geometry will be given elsewhere (Weeks &
Duax, to be published). In space group P2,2,2,, the
reflections in the three centrosymmetric projections
are especially easy to work with because their phases
have restricted values, and analysis of the computed
cosine seminvariants is facilitated (Duax, Weeks &
Hauptman, 1972). In the case of 9a-fluorocortisol, the
cosine seminvariants, cos (¢, +¢, -+ @;), corresponding
to each of the >, triples involving three two-dimen-
sional reflections having |E |, greater than 1-3, were
computed by means of both the modified triple pro-
duct and MDKS formulas. After selection of the origin
and the enantiomorph, the values of these cosine
seminvariants, along with the values for the cosines of
single phases which are structure seminvariants
[computed by the >, formulas, Karle & Hauptman,
1956, equations (5.89)-(5.91)] and the cosines of
seminvariant linear combinations of two phases com-
puted by the pair formulas and displayed in Table 1,
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were used to find phases for 49 two-dimensional reflec-
tions having large normalized structure-factor am-
plitudes and these were all later shown to be correct.
This set of 49 phases was input to the tangent formula
which was used to determine 201 additional phases,
and 26 of the nonhydrogen atoms were found among
the highest 35 peaks on the E map based on all 250
phases. The strength of the particular set of base phases
which were used is demonstrated by the fact that,
throughout the tangent cycles, multiple minima were
encountered in the modified tangent minimization
function only twice (Hauptman & Weeks, 1972).
Although it is undoubtedly true that alternative
methods of phasing this structure would have been
ultimatcly successful, the merit of an approach which
requires inspection of but a single Fourier map, in
which nearly the entire structure was to be found
among the strongest peaks, is obvious.

The two-dimensional reflections for which |E|g, is
greater than 1-3 are presented in Table 3. A partial
selection of the origin (Hauptman & Karle, 1956) was
made by assigning phases to 610 and 7,12,0 because

Table 3. Two-dimensional reflections having |E|obs > 1-3

The phases, in radians, are expressed relative to the origin and enantiomorph selection ¢g10=0, ¢7120=7/2, ¢012,=0, and

Porsa=T/2.
Ogg |E|  Phase Ogu |El  Phase Oug |E| Phase Ouu |E| Phase
0 16 2 3:02 0* 0 8 5 217 0* 0 15 4 3:47 n/2* 0 23 3 2:67 —7/2
0 2 6 2-90 0* 0 26 3 2-12 n* 0 1 6 2:42 n2* 0 7 3 2-19 — 2%
0 18 2 2:55 n* 0 12 1 2-11 0* 0 25 2 2:38 —m/2 0 11 1 1-93 —n/2
0 14 4 2-11 0* 0 4 3 2-08 n* 0 19 2 2-10 nf2* 0 13 5 1-76 —7/2
0 16 4 1-77 n* 0 8 7 2-:03 n* 0 3 6 2:00 —mn/2% 0 11 5 171 —7/2
0 4 6 142 n*E 0 22 1 1-94 0* 0 1 4 1190 —=x/2 0 23 5 1-68 —mf2*
0 24 2 1-41 0 0 6 3 1-91 0* 0 17 2 171 —mn/2% 0 27 1 1-63 —n/2
0 12 2 1-39 0 0 10 7 1-60 0* 0 23 4 1-:59 nf2 0 9 1 1-44 nj2
0 0 4 1-37 0 0 8 3 1-40 n* 0 15 6 1-36 /2 0 15 1 1-36 —n/2
0 24 3 1-31 0%
g0g |E|  Phase g0u |E]l  Phase uOg |E| Phase uOu |E| Phase
10 0 4 2:08 0 8 0 5 146 —n/2 1 0 4 1-56 0 5 07 2:39 — /2
4 0 0 1-88 n* 4 01 136 —-=7/2 1 0 6 1-50 0 1 01 2-24 —7[2%
4 0 6 1-61 0 5 0 6 1-41 n 5 0 3 2:16 —n/2
8 0 0 1-44 o* 7 0 6 1-39 n 5 01 1-75 nj2*%
6 0 6 138 0 7 01 16l —nj2%
0 04 137 0 9 0 1 155 n/2
4 0 2 1-33 n 3 03 1-53 n/2
220 |E}| Phase gu0 |E|  Phase ug0 |E| Phase uu0 |E| Phase
4 6 0 218 n 8 11 0 4-25 n* 7 12 0 3:48 n/2* 1 11 0 2:60 nj2%
2 10 0 1-98 n* 6 1 0 4-05 0* 7 22 0 2-54 n2¥ 1 15 0 2-13 —7/2
6 10 0 1:92 0* 2 1 0 312 n* 5 6 0 1-85 nj2* 1 21 0 1-98 2%
4 0 0 1-88 m* 8 19 0 2:49 n 5 10 0O 1-70 nf2%* S 70 1-91 nf2
10 10 0O 1-83 n* 6 17 0 247 n* 7 20 0 166 —m/2* 1 13 0 1-79 —7f2%
8 4 0 1-76 0 4 17 0 212 0* 7 4 0 1-65 72 7 17 0 1-49 —7n/2
2 18 0 1-74 n 6 19 0 2:07 n 1 12 0 1-60 mj2* 1 23 0 1-43 —m/2*
2 8 0 1-68 0 8 90 1-73 0%* 3 22 0 1-37  —=7/2 3 10 1-37 72
6 20 O 1-62 n 6 21 O 1-68 0 9 10 0 1-36 n/2 5 21 0 1-33 —7n/2
6 14 0 1-60 n 10 9 0 1-64 0 3 60 1331 —#/2 11 9 0 1-31 /2
6 12 0 1-55 n* 4 21 0 1-54 n 5 24 0 1-30 /2
2 6 0 1-49 0 2 19 0 1-41 0
10 12 0 1-47 0* 2 230 1-30 0
8 0 0 1-44 0*
4 20 0 1-41 n
2 20 0 1-34 0
* This phase was among the 49 phases input to the tangent formula.

A C28B - 15*
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examination of Table 3 and the list of 3, triples
revealed that not only did these reflections have large
normalized structure factor magnitudes, but they also
occurred in many triples which had large A4 values and
well-determined cosines. Throughout the phasing
procedure, new phases were not determined from single
2. triples unless the triples passed certain restrictions
placed on the values of their cosine seminvariants as
calculated by the modified triple product and MDKS
formulas. If 4 was greater than 3, both calculated
cosine values were required to be greater than 0-5. If
A was in the range 2-3, both calculated cosines were
required to be greater than 0-75, and if 4 was in the
range 1-5-2, both calculated cosines were required to
be greater than unity. A post mortem analysis revealed
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that, with such conservative acceptance criteria, no
cosine was assigned an incorrect value, and the use of
three of these cosines allowed the phases of 1,11,0,
1,13,0 and 5,10,0 to be related to the phases of the
origin limiting reflections.

Although the phases of all k0O reflections are fixed
by the assignment of phases to 610 and 7,12,0, it was
not possible, at this point, to determine any more of
these phases solely on the basis of >, triples having
well-calculated cosines. However, the pair relationships
[k0 analogs of equations (2.1) and (2.2)] did provide
a means for finding the phases of several other im-
portant /#k0 reflections, thereby eliminating the neces-
sity of introducing the phases of any of these reflec-
tions as ambiguities. The pairings among the uu0 re-

Table 4. 3, triples for large contributors (both A> 1) to some selected pairs

cos (134) cos (234) calc |E,E,]

h, h, h; hy A(134) TPROD TRUE A(234) TPROD TRUE *cos (¢, —¢,)
1 11 13 1 11 0 12 1 214 069 0-99 1-48 0-67 0-99 —583
7 12 0 6 1 0 7-06 0-84 1-00 4-87 0-84 1-00 —9262
1 12 0 2 10 2:50 0-81 1-00 173 0-81 1-00 —744
1 11 21 1 5 2 0 16 2 2-86 0-71 092 217 0-63 092 1133
1 11 23 1 17 3 0 6 3 295 076 0-93 1-62 1-05 093 —1223
6 17 0 S 6 0 2:29 0-97 1-00 1-:26 1-34 1-00 —674
4 17 0 5 6 0 1-97 1-19 1-00 1-08 0-87 1-00 —464
1 13 21 1 17 3 0 4 3 221 0-58 0-93 243 0-54 093 —1525
6 17 0 7 40 1-41 068 1-00 1-56 1-19 1-00 —484
1 13 23 1 5 2 0 18 2 1-66 0-76 0-92 132 0-93 092 767
1 21 23 1 11 0 22 1 1-49 0-78 0-99 1-08 1-31 0-99 —466
7 22 0 6 1 0 3-92 1-03 1-00 2-83 1-29 1-00 —4558
3 22 0 2 10 1-63 1-01 1-00 1-18 096 1-00 —422
0 6 26 5 16 3 5 10 0 1-22 0-79 0-89 1-35 0-70 0-89 —285
0 16 4 0 10 7 1-05 1-77 1-00 1-16 1-38 1-00 —185
0 4 26 0 15 4 0 11 1 268 1-09 1-00 2:73 070 —1-00 -—1631
8 153 8 11 0 204 055 —096 208 081 096 —409
1 153 1 11 0 71 08 09 175 087 099 534
24 0 15 4 0 9 1 1-84 075 1-00 1-26 0-56 —1-00 — 645
6 8 6 7 3 6 1 0 243 0-67 095 1-78 0-68 095 —1391
0 7 3 0 1 6 1-95 1-14 1-00 143 043 —1-00 1002
0 17 19 2 18 2 2 10 2:07 0-70 0-82 2:54 047 0-82 —1437
6 18 2 6 1 0 242 075 099 296 060 099 —1893
0 182 0 1 4 16 012 -100 197 078 100 785
0 16 18 2 17 2 2 10 228 0-66 071 1-92 0-78 0-71 —-273
6 17 2 6 1 0 4-78 067 0-99 403 0-75 099 —2589
6 17 0 6 1 2¢ 128 0-81 092 1-08 0-87 0-92 57
0 17 2 0 1 4 1-90 0-53 1-00 1-60 012 —1-00 277
0 8 8 1 8 6 1 0 1 1-18 066 097 1-11 0-55 0-97 —131
5 8 6 5 01 1-69 0-89 076 1-58 0-60 076 —485
0 1 6 0 9 1 1-46 0-86 —1-00 1-36 1-01 1-00 283
0 3 6 0 11 1 161 1-17  —1-00 1-51 1-75 1-00 442
0 4 6 0 12 1 1-26 1-43 1-00 1-18 1-31 1-00 —194
0 8 10 1 9 6 1 1 1 1-89 1-46 0-96 1-40 1-37 0-96 674
0 9 1 0 1 6 1-46 086 —1-00 1-07 0-56 —1-00 283
0 8 10 6 9 7 6 1 0 2-59 0-80 099 2:04 095 099 —1399
0 91 0 1 6 1-36 1-01 1-00 1-07 0-56 —1-00 283

* | E62l =0-89 < 1-00. See footnote in §2.
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flections proved to be particularly useful. Fig. 1(a)
shows that not only were the signs of all possible
pairings among four of the reflections of this type
strongly determined, but they were also all internally
consistent. Since the phases of two of these reflections,
1,11,0 and 1,13,0, were already known, the symbol «
was assigned the value n/2, and 1,21,0 and 1,23,0 could
be added to the set of reflections with known phase.
Reflection 560 was also strongly paired to the known
5,10,0, and knowledge of the value of its phase and of
the two uu0 phases made seven additional phases
accessible from the », triples, resulting in a total
number of 15 known /40 phases. The contributors to
the set of strongly paired uu0 reflections of 9a-fluoro-
cortisol for which both of the related >, triples have 4
values greater than 1 are presented in Table 4, each
entry in the last column of which is the contributor to
(2.1) or (2.2) corresponding to the pair of triples in
that row, and it can be verified that not only are all of
these individual contributions internally consistent,
but the predicted cosine seminvariants for the >,
triples are all strongly indicated to be positive. In order
that the phase assignments which were made for 1,21,0
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121 0 ) 230/
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Fig. 1. Pairings among two groups of 9a-fluorocortisol reflec-
tions. Values of s [equation (2-3)] are indicated on the arrows,
and an asterisk indicates that a pair relationship of Type II
was used. In those cases where the pair formula gave the
opposite relationship from the one shown, the s values are
circled. (a) Pairings among the uuQ reflections. (b) Pairings
among the Ogu reflections.
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and 1,23,0 be incorrect, the cosine seminvariants for
several of the triples in this group would have to be
negative, contrary to the entries in Table 4.

After the values of the phases for eight additional
hk0 reflections were determined by means of calculated
cosines, cos (¢, +¢,+¢s), the third origin-specifying
phase was assigned. Any reflection with / odd (Haupt-
man & Karle, 1956) would have served this purpose,
but the 0,12,1 reflection was chosen because it was
noticed that it would interact well with the 4k0O phases
which were already known. Four more phases could
then be found, and they included the 0,22,1 phase
which formed part of a set of paired Ogwu reflections as
shown in Table 4 and Fig. 1(b). Five of these Ogu re-
flections (0,10,7; 083; 085; 087; 0,24,3) were strongly
inter-related and were immediately added to the set of
reflections with known phase, but conflicts were en-
countered when three additional reflections (0,26,3;
063; 043) were considered. For this reason, phases
were first found for three related Ogg reflections be-
cause one of these phases, 0,16,2, could be consistently
obtained from three >, trlples each of which was
strongly indicated to have a cosine seminvariant equal
to unity. After these Ogg phases had been found, the
remainder of the Ogu reflections under consideration
were accessible from triples, and their phases, relative
to the remainder of the Ogu reflections were found to be
as shown in Fig. 1(b). This resulted in contradiction of
three of the Ogu pair averages [circled in Fig. 1(b)] of
which the most serious violation involved the (043;
0,26,3) pair. However, the two largest contributors to
the mildly discrepant (0,6,3; 0,26,3) pair disagreed
with the overall sum, and the positive calculated
cosines associated with these contributors, listed in
Table 4, clearly gave the correct relationship between
these phases. In addition to the three pair averages
which are incorrect, two large contributors to the
(0435 0,26,3) pair and a large contributor to each of the
pairs (063; 0,24,3) and (063; 083) are wrong, and these
contributors are also shown in Table 4. It can be seen
that in each case that a cosine seminvariant should
have been negative, the calculated value, although
positive, was small, so that there was in fact some
doubt that the indicated pair relationship (2.1) or
(2.2) was valid. Furthermore, the evidence for the rela-
tive Ogu phases being as shown in Fig. 1(b) was quite
strong, and any changes in these phases would have
resulted in a greater number of violations.

It may be verified from a consideration of the rules
for space group P2,2,2, given by Hauptman & Karle
(1956) that, given the choice of origin-defining reflec-
tions used in this structure determination (gu0, ugO
and Ogu reflections were used), the enantiomorph can
be chosen by selecting one of the two possible values
for a phase of one of the following types: Oug, u0g, g0u,
and Ouu [e.g. cos (@zu0+ Poue) =0]. Inspection of Table
3 reveals that 0,15,4 has the highcst normalized struc-
ture factor amplitude of all the reflections in these
four classes and, in addition, it intcracted with many
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reflections whose phases were already known in triples
having well-determined cosines. Consequently, the
enantiomorph was fixed by assigning a value of /2 to
®0154, and the phases for an interrelated set of seven
additional reflections were found from the 3, triples,
and thus the set of 49 two-dimensional reflections
which were input to the tangent formula was
completed.

Although the phases of reflections 0,11,1, 014, and
091 were not included among the 49 phases input to
the tangent formula, consideration of the information
concerning these phases which was available before
tangent extension and refinement of the basis set is
instructive because the 3, triples involving these reflec-
tions had an interesting relationship to some of the
pairs. During the phasing of 9a-fluorocortisol, an
attempt was made to determine phases for blocks of
related reflections so that there would be internal
checks on virtually all phase assignments. Since it was
possible to obtain an adequate starting set without
great difficulty, it was not necessary to include less
reliable phases or phases which did not help to make
other phases accessible. The two-dimensional triples
involving 0,11,1, 014, and 091, which have 4> 1 and
|Enl, |Eyl, |E_n—x|>1:3 are listed in Table 5. Although
®o111 could have been found from triple 2, the
opposite indication was given for this phase by triple 1

STRUCTURE DETERMINATION OF 92-FLUOROCORTISOL

if it were assumed that the cosine seminvariant for
this triple has a value of unity. The values of 0-70 and
0-59, calculated for this cosine by the triple-product and
MDKS formulas respectively, are only slightly less
than the acceptance limit of 0-75 used for triples with
A values in the range 2-3. Consequently, there was un-
certainty as to the true phase for 0,11,1. Inspection
of Table 5 reveals that two of the four triples involving
0,11,1 which have A4 values greater than 15, and which
have known phases for the other two reflections, have
negative cosines. Three triples with 4 values between
1-0 and 1-5 agree with triples 2 and 5 assuming that
these triples with lower A values have cosine sem-
invariant values of unity. However, confusion arises
because the negative cosines belong to two of the
triples with higher A4 values, and neither formula
gives a definitive negative indication for either of these
cosines. Under such circumstances, consideration of
the internal relationships among the triples may be
helpful. Table 4 shows that triples 1 and 2 form a large
contributor to the (043; 0,26,3) pair, and triples 4 and 5
form a contributor to the (085; 087) pair. In both
cases, the accepted relationship between the paired
reflections requires that the cosines for these particular
contributors have opposite signs, and in both sets of
contributing triples, the triple with a negative cosine
had a lower cosine value as calculated by both

Table 5. Two-dimensional triples involving 0,11,1, 014 or 091 which have A > 1

Serial h k —h-
1 0 11 1 0 26 3 0 15
2 0 11 1 0 4 3 0 15
3 0 11 1 0 27 1 0 16
4 0 11 1 0 8 5 0 3
5 0 11 1 0 3 6 0 8
6 0 11 1 0 1 6 0 10
7 0 11 1 0 17 2 0 6
8 0 11 1 0 19 2 0 8
9 0 1 4 0 18 2 0 19
10 0 1 4 0 22 I 0 23
11 0 1 4 0 16 2 0 17
12 0 1 4 0 7 3 0 8
13 0 1 4 0 17 2 0 18
14 0 1 4 0 16 2 0 15
15 0 1 4 0 12 1 0 13
16 0 1 4 0 T2 1 0 11
17 0 1 4 0 27 1 0 26
18 0 1 4 0 24 2 0 25
19 0 1 4 0 22 1 0 23
20 0 1 4 0 9 1 0 8
21 0 9 1 0 6 3 0 15
22 0 9 1 0 16 2 0o 7
23 0 91 0 23 3 0 14
24 0 9 1 0 8 5 0 T
25 0 9 1 0 1T 5 0o 2
26 0 9 1 0 T 6 0 8
27 0 9 1 0 24 3 0 15
28 0 9 1 0 27 1 0 18
29 0 9 1 0 1 4 0 8
30 0 9 1 0 7 3 0 T6
31 0 9 1 0 1 6 0 10
32 0 91 0 17 2 0 26

COS (@n+ @x+ ¢ _n-s)

k A TPROD MDKS TRUE
3 2-73% 0-70 0-59 -1
4 2:68* 1-09 1-77 1
2 1-83 0-62 014 1
% 1-61% 1-17 0-90 -1
7 1-51% 1-75 1-29 1
7 1-44% 1-07 0-72 1
3 1-22% 1:57 1-84 1
3 1-09% 0-82 1-27 1
2 1-97% 0-78 0-71 1
3 190 0-41 —0-07 -1
2 1-90% 0-52 0-01 1
7 1-63* 0-77 0-97 1
2 1-60* 0-12 0-05 -1
6 1-51 —0-01 —-0-14 -1
5 1-36 1-11 1-29 1
5 1:32 0-64 0-89 1
3 1-26 0-23 —0-69 1
2 1-23 0-58 0-35 1
5 1-:20% 0-81 1:25 1
3 1-14 0-87 1-28 1
4 1-84* 0-75 0-53 1
3 1-84% 0-95 0-95 1
g 1-57 0-51 0-09 -1
6 1-46% 0-86 0-27 -1
3 1-37 0-99 0-35 -1
7 1-36% 1-01 0-47 1
q 1-26* 0-56 0-32 -1
2 1-15 0-81 1-89 1
5 1-14 0-87 1-28 1
q 1-08* 0-57 0-20 -1
7 1-07* 0-56 —0-45 -1
3 1-01*  —0-55 0-08 -1

* gk and ¢_p_ were both among the set of 49 two-dimensional phases input to the tangent formula.
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formulas. However, despite the fact that it now seems
apparent that the bulk of the evidence indicated that
®o11:= —7/2, hindsight is always clearer than fore-
sight, and at the time the initial phases were derived,
it did not seem as if it was necessary to introduce this
phase when there was a chance that it might be
wrong.

The relationship of the triples involving 014 to the
pairs is relatively straightforward. The (0,17,2; 0,19,2)
pair requires that the cosine seminvariants for triples
9 and 13 have opposite sign, and the (0,16,2; 0,18,2)
pair places the same requirement on triples 11 and 13.
Thus, triple 13 probably has a negative cosine since
the conflicting contributors to both pairs would then
be resolved, and this conclusion is also favored by the
triple product and MDKS cosine seminvariant values.
The pair relationships among the 091 triples are more
complex and are summarized in Table 6. Here, as in
the case of the 0,11,1 triples, the triples with cosine
seminvariant values of unity do have higher calculated
values from both formulas although the distinction is
not definitive. Triples 24 and 31 constitute an example
of the relatively infrequent type of pair contributor
which gives a correct indication of the relationship
among the paired phases because both cosine sem-
invariants are negative. Reflection 091 occurs in many
more triples having negetive cosines than predicted by
probability theory when the A4 values are greater
than unity. A few reflections of this type occasionally
occur, but it is wise to verify the intensity of such a
reflection since it might have been mis-measured. In
this case, however, the amplitude of the 091 reflection
had been, in fact, correctly measured.

Table 6. Relationships among the cosine seminvariants
Sor triples involving 091 as indicated by pairs

Triple 1 Triple 2 cos,*cos, Paired reflections

24 26 -1 0,8,5; 0,8,7
24 29 -1 0,1,4;0,1,6
24 31 +1 0,8,5; 0,10,7
26 31 -1 0,8,7; 0,10,7

4. Conclusion

The procedures used to determine an initial set of 49
phases for the structure of 9a-fluorocortisol have been
described in detail, and the role in phase determina-
tion played by the cosines of those structure semin-
variants, ¢, + ¢,, which are linear combinations of two
phases, has been emphasized. These cosines were
computed by the recently derived pair formulas
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(Hauptman, 1972b), and these formulas, like the 3,
formulas, may provide a means for finding the phases
of one or more reflections which occur in blocks
which cannot be related to the origin and enantio-
morph fixing reflections by >, type relationships alone.
In this way, the need for some of the ambiguities
which are deliberately introduced in the multiple solu-
tion approach to direct methods may be avoided, and
in the case of 9a-fluorocortisol no ambiguities were
necessary.

The mechanics of the use of the pair formulas have
been illustrated, and the relationship of these formulas
to the coincidence method of Grant, Howells &
Rogers (1957) and to certain Y, triples has been de-
monstrated. Examination of the values computed by
the modified triple-product and MDKS formulas for
the cosine seminvariants, cos (¢, +@,+ @), of >,
triples in these related groups may help to detect cases
when the phase relationships indicated by the pair
formulas are incorrect.

The authors are grateful to Dr W. L. Duax for many
helpful discussions concerning the application of the
pair formulas. This research was supported in part by
U.S.P.H. Grant No. CA 10906.
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