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Fig.6. Liaisons hydrog6nes intermol~culaires autour de l'axe 

2 situ6/t x=0,5 et y=0,5. Les courbes de niveau dessin6es 
correspondent A la section parall61e/t a, e, A la cote z = 0,450 
d'une s6rie diff6rence destin6e ~. localiser les hydrog6nes. 
La premi6re courbe correspond ~, une densit6 61ectronique 
de 0,1 e..~-3 et la deuxi6me/t 0,2 e.,~-3. 
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Application of the Pair Relationships to the Structure Determination 
of 9a-Fluoroeortisol 
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(Received 12 May 1972) 

The crystal structure of 9e-fluorocortisol (C21H29FOs; space group P212~21) has been solved by a pro- 
cedure which incorporates a number of direct-method techniques including, in particular, the recently 
derived formulas for the cosines of those structure seminvariants, ~0~ + ~02, which are linear combinations 
of two phases. These techniques yielded, with perfect accuracy, the values of 49 two-dimensional phases 
which were used as input to the tangent formula. The initial E map, based on the 250 tangent formula 
phases, revealed 26 of the 27 nonhydrogen atoms in the structure. 

1. Introduction 

The values of the cosine invariants, as calculated from 
normalized structure-factor amplitudes, may serve as 
the basis for a program of phase determination. The 
most widely used cosine invariants, cos (~0h~ + ~0~ 2 + q~ha), 

involve a linear combination of three phases subject 
to the restriction that hi + hz + h3 = 0, and their values 
are independent of the choice of origin and enantio- 
morph and are uniquely determined by observed 
structure-factor magnitudes alone. These cosine 
invariants, as computed by the modified triple product 
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(Hauptman, Fisher, Hancock & Norton, 1969) and 
MDKS formulas (Fisher, Hancock & Hauptman, 
1970a, b; Hauptman, 1972a), have been used to solve 
a number of structures (e.g. Weeks, Cooper, Norton, 
Hauptman & Fisher, 1971 ; Duax, Weeks & Hauptman, 
1972). 

Although the values of all phases are fixed once the 
origin and enantiomorph have been selected, it is not 
always true that all phases are accessible through the 
universal invariants, cos (09t + 092"~ (/93), alone (Haupt- 
man, 1972a, Chapter I). In addition, the situation often 
arises in which a given phase can be related to the 
origin-specifying reflections, but one or more of the 
intervening cosine invariants cannot be accurately 
computed, and the phase in question cannot be found 
reliably. In such cases, it is necessary to use certain 
types of cosine seminvariants in order to find the un- 
known phase. In contrast to the cosine invariants, the 
values of the cosine seminvariants are uniquely deter- 
mined by the observed structure factor magnitudes 
provided that the functional form of the geometric 
structure factor has been specified. Thus, the ccsi les 
of individual phases which are structure seminvariants 
may be computed using the space-group specific ~ 
formulas (Hauptman & Karle, 1953). If these auxiliary 
formulas also fail to provide a path to an important 
unknown phase, the latter may be assigned two or more 
possible values and introduced into the set of known 
phases as an ambiguity (Germain & Woolfson, 1968). 
The structure will, presumably be found on a Fourier 
map computed for a set of phases based on one of the 
values of the ambiguous phase. 

The coincidence method of Grant, Howells & 
Rogers (1957) provided a means of relating the signs 
of pairs of structure factors in centrosymmetric space 
groups by utilizing suitable combinations of triple- 
product sign relationships, each of which was known 
with high probability. For example, if 

S(h)S(h') _~ S(h + h') (1.1a) 

with probability P~, and 

S(h)S(h') " S(h - h') (1.1b) 

with probability P2, then 

S(h+h')-~ S ( h - h  ' ) (1.2) 

with probability 

P = 2 P ~ P z - P ~ - P z +  1, (1.3) 

and no knowledge of S(h) or S(h') is required. Recently 
(Hauptman, 1971, 1972b) it has been found that the 
relationships among pairs of phases which are related 
as in equation (1.2) may be expressed in terms of formu- 
las for the space-group dependent cosine seminvariants, 
cos (09~+092). In these (so-called pair) formulas, the 
cosine seminvariants are computed in terms of a 
summation of the products of pairs of (IEI 2 -  1) for all 
pairs of reflections which are related to each of the 
paired reflections in 72 triples. The resulting summa- 

tions provide a stronger measure of the relationship 
among such phases than can be obtained from the 
single pair of relationships given in equations (I. 1). 

The pair formulas, like the ~1 formulas, may provide 
a means of obtaining necessary phases which cannot 
be reached through an analysis of the universal in- 
variants cos (091+ 092 + 093) alone or through those 
phase-determining formulas which relate triples of 
reflections for which hi + h2 + h3 = 0. Thus, they may be 
useful in reducing the number of ambiguities which 
must be introduced at the beginning of the phasing 
procedure for an unknown structure. The use of the 
pair formulas in this way is illustrated in this communi- 
cation by their application to the unknown structure of 
9c~-fluorocortisol. It is not the intention of the authors 
to claim that this structure could not have been solved 
by some other direct-method approach, without 
consideration of the pair formulas. However, use of the 
pair formulas did eliminate the need for any ambi- 
guities, and such procedures may become increasingly 
important as the size of structures under consideration 
and the resulting number of ambiguities necessary to 
insure the solution of the structure increase. 

2. Pa ir  formulas  

In space group P212121, two types of formulas exist 
which allow the cosine seminvariants, cos (qh+092), 
where the phases 091 and 092 are both restricted to be 
either 0 or ~c or both restricted to be _re/2, to be 
computed from normalized structure-factor magni- 
tudes alone. The detailed derivation of such formulas 
has been presented elsewhere (Hauptman, 1972b), and 
only the results are summarized here. The first type of 
formula, in the form applicable to Okl reflections, is 

EokmEok212 = [EokmEoR2z2I COS (090kin + 090k2t2) 

N )h+-~(kl +k2) ] 2 - 
~ -2- ( ( -  1 (IEs, ~tk +k 1) . 1 2 ) , ½ ( 1 1 +  12) 

X ([Eh,½(kl_k2).~(ll_12)l 2 -  1))n 

N 1),, + ,l([Eh.,Ckl+ - - -  kz).~m-zll - 1) 2 ( ( -  *(kl-k2) + 2 

X (]Eh,.~(ki_k2).½(ll+12)] 2 - 1 ) ) n  (2.1) 
where kx + k2 and l~ +/2 are even (i.e. kl and k2 have the 
same parity, and/1 and/2 have the same parity) and N 
is the number of atoms, assumed identical to each 
other, in the unit cell. Clearly, the contributions from 
the two parts of this formula may be combined. 
Analogous formulas for the hOl and hkO reflections 
may be found through a cyclic permutation of the 
indices. Because of the cumbersome notation occurring 
in formulas of this sort, it is convenient to introduce the 
notation hl=(0kJl) ,  h2=(0k2/2) , h3=[h,½(kx +k2) , ½(I1 
+12)] or [h,½(k,+k2), ½(/,-12)], h4=[h, ½(kl-k2), ½(ll 
-12)] or [h, ½(kx-k2), Jz(ll+12)], and Ehx=EI, etc. In 
the Type I formulas [equation (2.1)], reflections h3 and 
h4 may be, and generally are, three-dimensional, but 
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in the  T y p e  II f o r m u l a s ,  o f  w h i c h  

E0k,ltE0ktl2 = [E0ktltEokttzl COS ((Po~ll + (P0k,12) 

N 1)k+ ~(/t_12 ) 12)12- 1) -~ y ( ( -  (IE0, k,+(,l+ 

2 × (IEo.k+kl.~(,t-,2)l - 1))k (2.2) 

is an  e x a m p l e ,  r e f l ec t ions  h3 = [0, k,  1( l  t q-/2)] a n d  h 4 = 
[0, k+k~, ½(Ia-12)] [no t  to  be c o n f u s e d  w i t h  t he  h3 
a n d  h4 u s e d  in (2.1)] a l w a y s  h a v e  at  leas t  o n e  ze ro  index .  
It is a p p a r e n t  t h a t  f o r m u l a s  o f  t he  s e c o n d  t y p e  a r e  

a p p l i c a b l e  o n l y  to  pai rs ,  hx a n d  h2, h a v i n g  a c o m m o n  

n o n z e r o  c o m p o n e n t .  

T a b l e  1. Pairing of  the two-dimensional reflections having ]E lobs > 1 . 4  

Obs IE1E21 Calc IEIE21 No. 
Reflection 1 Reflection 2 

0 16 2 0 18 2 
0 16 2 0 16 4 
0 16 2 0 16 4 
0 18 2 0 16 4 
0 22 1 0 8 7 
0 4 3 0 6 3 
0 4 3 0 8 3 
0 4 3 0 26 3 
0 6 3 0 8 3 
0 6 3 0 8 3 
0 8 3 0 8 5 
0 8 3 0 8 7 
0 8 5 0 8 7 
0 8 5 0 10 7 
0 8 7 0 10 7 
0 17 2 0 19 2 
0 1 4 0 23 4 
0 15 4 0 23 4 
0 1 6 0 3 6 
0 9 1 0 23 5 
0 7 3 0 23 3 
0 11 5 0 13 5 
4 0 0 8 0 0 
5 0 1 7 0 1 
7 0 1 9 0 1 
3 0 3 5 0 3 
4 0 0 4 20 0 
2 6 0 2 8 0 
2 6 0 2 18 0 
2 10 0 10 10 0 
6 10 0 10 10 0 
6 10 0 6 12 0 
6 10 0 10 12 0 

10 10 0 6 12 0 
10 10 0 10 12 0 
6 12 0 10 12 0 
6 12 0 6 14 0 
4 20 0 6 20 0 
2 1 0 6 1 0 
6 1 0 10 9 0 
6 1 0 4 17 0 
6 1 0 6 21 0 
8 9 0 8 11 0 
8 11 0 8 19 0 
4 17 0 6 17 0 
4 17 0 8 19 0 
6 17 0 6 19 0 
6 17 0 6 19 0 
7 4 0 5 6 0 
5 6 0 5 10 0 
5 10 0 7 12 0 
7 20 0 7 22 0 
1 11 0 1 13 0 
1 11 0 1 21 0 
1 11 0 1 2 3  0 
1 11 0 1 2 3  0 
1 13 0 1 21 0 
1 13 0 1 2 3  0 
1 21 0 1 23  0 

*cos (tat - ~o2) *cos (tpl - ~o2) ctr. s 
- 7 . 7  - 1 4 4  18 1 1 - 8  
-5"3  - 7 4  17 6"1 
- 5 .3  - 30 36 4 . 0 *  

4"5 68 19 5"9 
-3"9  - 147 19 12.1 
- 3"9 - 107 21 9"4 

2.9 89 12 5"8* 
4.4 - 92t 11 5.9* 

-2"6  - 7 1  21 6"3 
- 2.6 74t 12 4"9* 
-3"0  - 3 6  43 4"8* 

2.8 37 41 4"7* 
-4"4  - 5 2  17 4-3 

3.4 56 17 4"5 
- 3"2 - 7 6  13 5-3 
- 3 - 6  - 1 8 3  18 14.6 
- 3 . 0  - 8 1  19 6-8 

5"5 -55I" 15 4"3 
- 4 . 8  - 1 3 3  17 10.5 
- 2 . 4  - 102 19 8.4 

5-8 - 148t 11 9.4* 
3-0 145 10 8.6* 

- 2.7 - 268 25 25.0 
- 2 . 8  - 66 48 8"9 
-2"5  - 3 3  41 4"2 
-3 -3  - 4 1  51 5"8 

2.6 131 9 7.4* 
2.5 107 19 8-8* 

- 2 . 6  - 6 5  18 5-3* 
3"6 32 39 4-1" 

-3"5  - 2 3 5  36 26-5* 
- 2 . 9  - 6 0 0  14 41"7" 

2-8 633 13 42"4 
2.8 633 13 42.4 

- 2.6 - 785 10 46.0* 
- 2.2 - 246 34 26.8* 

2.4 80 13 5-5 
2.2 86 11 5-4 

- 12-6 - 7 6  18 6.9 
6.6 86 14 6-4 
8.6 58 16 4"9 
6.8 149 14 10.8" 

-7"3  - 3 6 0  13 24.5* 
10.6 - 1 2 1 t  11 8"1 

-5"2  - 1 6 5  13 11"3 
- 5"3 - 9 8  13 6"9 

5"1 81 12 5"5 
5"1 75 13 5"3* 
3"0 - 591" 16 4"6 
3"1 94 17 7"4 
5"9 334 15 24"3 

- 4"2 - 273 10 16"2* 
-4"6  - 4 7 9  19 39"0* 

5"1 85 15 6"4 
-3"7  - 6 0  15 4"5 
-3"7  - 7 3  17 5"8* 
-3"5  - 104 15 7"7 

2"5 74 13 5"1 
-2"8  - 2 6 5  13 17"8" 

* Indicates that pair relation of Type II was used. 
t Disagreement between observed and calculated IE1E21* cos (~0,-~02). 

A C 2 8 B  - 15 
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The use of these formulas can be best understood 
by considering examples, and some data for the pairs 
between the strongest 9~-fluorocortisol two-dimen- 
sional reflections are presented in Table 1. For  example 
the scaled average of the products of IEI z -  1 for the 
pairs of h,17,2 and h, l ,0 reflections and the pairs of  
h,17,0 and h, l ,2 reflections yielded - 1 4 4  as the cal- 
culated value of E0,x6,2 Eo,18,2, indicating that  0,16,2 
and 0,18,2 have different phases. The quanti ty 
[E1EzI* cos (~01-~02) is tabulated rather than E1Ez= 
lEIEzl*cos (~01+~2) of (2.1) and (2.2) because the 
relationship between the two phases is immediately 
apparent  from the sign of the former. If this sign is 
positive, the phases have the same value, but they 
differ by n radians if the sign is negative. As can be 
seen from Table I, the magnitude of the calculated 
product  of the normalized structure-factor amplitudes 
is quite different from the observed value. However, 
this is not a serious problem because it is known that 
the phase of  each of the paired reflections is restricted 
to one of  two possible values, and the pair formula is 
only used to determine if these values are the same or 
differ by n radians. The probabili ty that  the correct 
relationship between the phases is the indicated one 
increases as the absolute value of  the calculated 
product  increases, and one measure of the reliability 
of  the relative phase indication is given by the signifi- 
cance level, 

s=Zn~(obslE~E21+calclE~E2l)/N, (2.3) 

where n is the number  of  contributors to the average 
in equation (2.1) or (2.2), and N is the number  of 
atoms in the unit cell. F rom a study of the results of 
the application of formulas of this type to the data for 
several structures having 20-30 nonhydrogen atoms in 
the asymmetric unit, it appears that the indicated 
phase relationship is normally  correct if s is four or 
greater. Only those pairs having this minimum sig- 
nificance level are included in Table 1. Inspection of  the 
table shows that only six of the fifty-nine pair relations 
were incorrectly indicated. An asterisk beside the value 
of  s indicates that the figures were obtained from a 
Type II formula, and Type I formulas were used in 
those cases where there is no asterisk. 

The relationship of  the pair formulas to the coin- 
cidence method of Grant,  Howells & Rogers (1957) 
may be made clearer by examining the nature of  the 
individual contributors to the pair summations,  and an 
analysis of  this type also helps one to understand how 
and when the pair formulas will give incorrect relative 
phase indications. The case of  1,11,0 and 1,21,0 will be 
considered as an illustration. The  Type I summation 
for these two reflections is over the products of 
(IEI 2 -  1)'s for the pairs of  1,5,l and 0,16,l reflections 
and the pairs of 0,5,l and 1,16,1 reflections. The paired 
reflections 1,11,0 and 1,21,0 each form a triple of the 
~2 type with some symmetry variant of each 1,5,l and 
0,16,l and with each 0,5,l and 1,16,l. The largest con- 
t r ibutor  to the summation occurs when h3= 152 and 

h4=0,16,2, and the ~2 triples corresponding to this 
contr ibutor  are given in Table 2. 

Table 2. ~ 2  triples corresponding to a large contributor 
to the summation for the pair (1,11,0; 1,21,0) 

h(h~ or h2) k(h3 variant) -h-k(h4 variant) A* 
1 21 0 1 5 2 0 1--6 2 2.17 
1 I1 0 T 5 2 0 1--6 ~ 2.86 

* A =(2/N ~/z) lEhEuE-h-kl. 

It is convenient to introduce the notation cos (134) = c ~s 
(~hl + ~0h*3 + ~h*4) and cos (234) = cos (~0h2 + q)h*3 + q'h*4) 
where the asterisk indicates that symmetry variant of 
the associated reflection needed to yield a structure 
invariant. Owing to the space-group symmetries, 
cos (134)= _+cos (234). If~0 i s ~=~, 090 i~ 2=fl, ~ol 11 o = 
~01, and ~01 21 0 = ~02, then 

41 =~01 11 0+~ i  s 2+(Po i~, ~=~01+c~+fl (2.4) 
and 

4 2 = ~ 1  21 0-~- ~ i  5 ?. "]- ~0 ]'6 2 = (/92-]t- 0C-]-~ • (2.5) 

It follows that  
41 = 42 if ~01 = ~02 (2.6) 

and 
41 = n + 42 if ~01 = n + ~02 . (2.7) 

Hence qh=~02 or ~0~=n+~02 according as cos 4 1 =  
cos 42 or cos 41 = - c o s  42. (If cos 4~ = + cos 42 ~ 0, 
no information is available.) If the A values for the two 
triples are both large, as is true in this example, then 
it is probable that both cosine seminvariants will have 
rositive values and that  the phase relationship as 
indicated by equation (2.6), which agrees with the 
overall indication from equation (2.1), will be correct. 
Consistent with the pair equations (2.1) and (2.2) is 
the assumption that  the two cosine seminvaria~ts 
related to a single dominant  contr ibutor  have the same 
sign.~" It is apparent  then that the pair relationship will 
fail in those cases where there is a single dominant  
contributor,  and that contr ibutor  has one positive and 
one negative associated cosine seminvariant. Thus, 
erroneous conclusions based on the pair formulas can 
be avoided in large part by examining the large con- 
tributors and checking the calculated values of their 
cosines which are predicted by the modified triple- 
product  and M D K S  formulas. 

3. Appl i ca t ion  to 9a- f luorocort i so l  

9~-Fluorocortisol is a steroid containing 27 non- 
hydrogen atoms which crystallizes in space group 

1 The same relationship between the paired phases is not 
obtained from the sign of the individual contribution to the 
pair summations [equations (2.1) and (2.2)] as is obtained from 
the assumption of equal cosine seminvariants for the two re- 
lated Z2 triples in the case that either, but not both, of [Eh3], 
[Eh4[ is less than unity. As an example, consider the contribu- 
tion of 6,17,0 and 6,1,2 to the (0,16,2; 0,18,2) pair as given 
in Table 4. 
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P212121 with one molecule  per  asymmetr ic  uni t  in a cell 
hav ing  the d imens ions  a =  10.087, b=23 .710 ,  and  c =  
7.660 A. The  details  o f  the s t ructure  ref inement  and  
molecu la r  geomet ry  will be given elsewhere (Weeks & 
Duax,  to be published).  In space g roup  P212~21, the 
reflections in the three cen t rosymmet r ic  projec t ions  
are especially easy to work  with because their  phases 
have  restricted values, and  analysis  o f  the c o m p u t e d  
cosine seminvar ian ts  is faci l i ta ted (Duax,  Weeks & 
H a u p t m a n ,  1972). In the case of  9e-f luorocort isol ,  the 
cosine seminvar iants ,  cos (qh + q~2 + q~a), co r respond ing  
to each of  the ~2 triples involving three two-dimen-  
s ional  reflections hav ing  IE[obs greater  than  1.3, were 
c o m p u t e d  by means  of  bo th  the modif ied tr iple pro- 
duct  and  M D K S  formulas .  After  selection o f  the origin 
and  the e n a n t i o m o r p h ,  the values of  these cosine 
seminvar iants ,  a long  with the values for  the cosines o f  
single phases which are s t ructure  seminvar ian ts  
[computed  by the ~x formulas ,  Kar le  & H a u p t m a n ,  
1956, equa t ions  (5.89)-(5.91)] and  the cosines of  
seminvar i an t  l inear  comb ina t i ons  o f  two phases com- 
pu ted  by the pai r  fo rmulas  and  displayed in Table  1, 

were used to find phases for  49 two-d imens iona l  reflec- 
t ions  having  large normal ized  s t ruc ture- fac tor  am- 
pl i tudes and  these were all la ter  shown to be correct .  
This  set o f  49 phases was input  to the tangent  fo rmula  
which was used to de te rmine  201 add i t iona l  phases, 
and  26 of  the n o n h y d r o g e n  a toms  were found  a m o n g  
the highest  35 peaks on the E m a p  based on all 250 
phases. The  s t rength  of  the par t icu lar  set o f  base phases 
which were used is demons t r a t ed  by the fact that ,  
t h r o u g h o u t  the t angen t  cycles, mul t ip le  m i n i m a  were 
encoun te red  in the modif ied  t angen t  min imiza t ion  
funct ion  only  twice ( H a u p t m a n  & Weeks,  1972). 
A l t h o u g h  it is u n d o u b t e d l y  true tha t  a l te rnat ive  
me thods  of  phas ing this s t ructure  would  have been 
u l t imate ly  successful, the meri t  o f  an a p p r o a c h  which 
requires inspect ion o f  but  a single Four ie r  map,  in 
which near ly  the ent i re  s t ructure  was to be f o u n d  
a m o n g  the s t rongest  peaks,  is obvious.  

The two-d imens iona l  reflections for  which IEIobs is 
greater  than  1.3 are presented  in Table  3. A par t ia l  
selection o f  the origin ( H a u p t m a n  & Karle ,  1956) was 
made  by assigning phases to 610 and  7t12~0 because 

Table  3. Two-dimensional reflections having IElobs  > 1.3 

The phases, in radians, are expressed relative to the origin and enantiomorph selection ~061o=0, ~0712o=n/2, ¢po121=0, and 

Ogg [El Phase Ogu 
0 16 2 3.02 0* 0 8 5 
0 2 6 2.90 0* 0 26 3 
0 18 2 2.55 n* 0 12 1 
0 14 4 2.11 0* 0 4 3 
0 16 4 1"77 n* 0 8 7 
0 4 6 1"42 n* 0 22 1 
0 24 2 1"41 0 0 6 3 
0 12 2 1"39 0 0 10 7 
0 0 4 1.37 0 0 8 3 

0 24 3 

gOg IEI Phase gOu 
10 0 4 2"08 0 8 0 5 
4 0 0 1"88 n* 4 0 1 
4 0 6 1.61 0 
8 0 0 1"44 0* 
6 0 6 1"38 0 
0 0 4 1"37 0 
4 0 2 1"33 n 

ggO IE[ Phase guO 
4 6 0 2-18 ~ 8 11 0 
2 10 0 1"98 n* 6 1 0 
6 10 0 1"92 0* 2 1 0 
4 0 0 1"88 n* 8 19 0 

10 10 0 1"83 n* 6 17 0 
8 4 0 1"76 0 4 17 0 
2 18 0 1"74 n 6 19 0 
2 8 0 1"68 0 8 9 0 
6 20 0 1.62 n 6 21 0 
6 14 0 1"60 n 10 9 0 
6 12 0 1.55 n* 4 21 0 
2 6 0 1.49 0 2 19 0 

10 12 0 1.47 0* 2 23 0 
8 0 0 1-44 0* 
4 20 0 1"4l n 
2 20 0 1"34 0 

* This phase was among 

~Oo Is 4 = n/2. 

IEI Phase Oug IEI Phase Ouu IEI Phase 
2.17 0* 0 15 4 3.47 n/2* 0 23 3 2"67 - n / 2  
2-12 n* 0 1 6 2.42 n/2* 0 7 3 2"19 -n/2* 
2.11 0* 0 25 2 2.38 -n /2  0 11 1 1.93 -re~2 
2"08 n* 0 19 2 2-10 n/2* 0 13 5 1"76 --n/2 
2"03 n* 0 3 6 2"00 --n/2* 0 11 5 1"71 -n]2 
1"94 0* 0 1 4 1"90 --n/2 0 23 5 1 " 6 8  -n/2* 
1"91 0* 0 17 2 1"71 -n/2* 0 27 1 1.63 --n/2 
1.60 0* 0 23 4 1"59 n/2 0 9 1 1"44 n/2 
1.40 n* 0 15 6 1"36 n/2 0 15 1 1.36 - n / 2  
1"31 0* 

I EI Phase uOg I EI Phase uOu I EI Phase 
1.46 -n /2  1 0 4 1.56 0 5 0 7 2.39 -n /2  
1.36 - n / 2  1 0 6 1.50 0 1 0 1 2.24 -n/2* 

5 0 6 1.41 n 5 0 3 2"16 -n /2  
7 0 6 1-39 n 5 0 1 1"75 n/2* 

IEI 
4.25 
4.05 
3"12 
2"49 
2"47 
2"12 
2"07 
1.73 
1.68 
1 "64 
1.54 
1.41 
1-30 

Phase ugO I EI Phase 
n* 7 12 0 3.48 n/2* 
0* 7 22 0 2.54 n/2* 
n* 5 6 0 1-85 n/2* 
n 5 10 0 1-70 n/2* 
n* 7 20 0 1"66 -n/2* 
0* 7 4 0 1"65 n/2 
n 1 12 0 1-60 n/2* 
0* 3 22 0 1"37 -n /2  
0 9 10 0 1"36 n/2 
0 3 6 0 1.31 - n / 2  
n 5 24 0 1.30 n/2 
0 
0 

7 0 1 1"61 --n/2* 
9 0 1 1"55 rt/2 
3 0 3 1"53 n/2 

uuO IEI Phase 
1 11 0 2.60 n]2* 
1 15 0 2"13 - n / 2  
1 21 0 1-98 n/2* 
5 7 0 1"91 n/2 
1 13 0 1 " 7 9  - -n/2* 
7 17 0 1-49 - n / 2  
1 23 0 1 " 4 3  - -n/2* 
3 1 0 1"37 n/2 
5 21 0 1"33 --n/2 

11 9 0 1"31 n/2 

the 49 phases input to the tangent formula. 

A C 28B - 15" 
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examina t ion  o f  Tab le  3 and  the list o f  Y z triples 
revea led  tha t  not  only  did these reflections have  large 
n o r m a l i z e d  s t ruc ture  fac tor  magni tudes ,  but  they also 
occu r r ed  in m a n y  triplcs which  h a d  large A values and  
we l l -de t e rmined  cosines. T h r o u g h o u t  the phas ing  
p rocedure ,  new phases were  no t  d e t e r m i n e d  f rom single 
~z triples unless the triples passed cer ta in  restr ic t ions 
p laced  on the values of  their  cosine seminvar ian ts  as 
ca lcu la ted  by the modif ied  tr iple p roduc t  and  M D K S  
formulas .  I f  A was grea te r  than  3, bo th  ca lcu la ted  
cosine values were  requ i red  to be grea ter  than  0.5. If  
A was in the range  2-3,  both  ca lcu la ted  cosines were  
r equ i red  to be grea te r  than  0.75, and  if A was in the 
range  1-5-2, bo th  ca lcu la ted  cosines were  requ i red  to 
be grea te r  t han  unity.  A post mortem analysis  revea led  

that ,  wi th  such conserva t ive  accep tance  cri ter ia ,  no  
cosine was assigned an incorrec t  value,  and  the use o f  
three of  these cosines a l lowed  the phases o f  1,11,0, 
1,13,0 and  5,10,0 to be re la ted to the phases of  the 
origin l imit ing reflections. 

A l t h o u g h  the phases of  all hkO reflections are fixed 
by the ass ignment  of  phases to 610 and  7,12,0, it was 
not  possible,  at this point ,  to de t e rmine  any  m o r e  o f  
these phases solely on the basis o f  ~2 triples hav ing  
wel l -ca lcula ted  cosines. Howeve r ,  the pair  re la t ionships  
[hkO ana logs  of  equa t ions  (2.1) and  (2.2)] did p rov ide  
a means  for f inding the phases of  several o the r  im- 
po r t an t  hkO reflections, thereby  e l imina t ing  the neces- 
sity of  i n t roduc ing  the phases of  any  of  these reflec- 
t ions as ambigui t ies .  The  pair ings a m o n g  the uuO re- 

Table  4. ~,z triples for large contributors (both A > 

hi hz 
I 11 0 1 13 0 

1 11 0 1 21 0 

1 11 0 1 23 0 

1 13 0 1 21 0 

1 13 0 1 23 0 

1 21 0 1 23 0 

0 6 3 0 26 3 

0 4 3 0 26 3 

0 6 3 0 24 3 

0 6 3 0 8 3 

0 17 2 0 19 2 

0 16 2 0 18 2 

0 8 5 0 8 7 

0 8 5 0 10 7 

0 8 7 0 10 7 

h3 ]14 
1 1 1 0 12 
7 12 0 6 1 
1 12 0 2 1 

1 5 2 0 16 

1 17 3 0 6 
6 17 0 5 6 
4 17 0 5 6 

1 17 3 0 4 
6 17 0 7 4 

1 5 2 0 18 

1 1 1 0 22 
7 22 0 6 1 
3 22 0 2 1 

5 16 3 5 10 
0 16 4 0 10 

0 15 4 0 11 
8 15 3 8 11 
1 15 3 1 11 

0 15 4 0 9 

6 7 3 6 1 
0 7 3 0 1 

2 18 2 2 1 
6 18 2 6 1 
0 18 2 0 1 

2 17 2 2 1 
6 17 2 6 1 
6 17 0 6 1 
0 17 2 0 1 

1 8 6 1 0 
5 8 6 5 0 
0 1 6 0 9 
0 3 6 0 11 
0 4 6 0 12 

1 9 6 1 1 
0 9 1 0 1 

6 9 7 6 1 
0 9 1 0 1 

1) to some selected pairs 

cos (134) cos (234) calc IE, Ed 
A(134) TPROD TRUE A(234) TPROD TRUE *cos(rpl-~02) 

1 2.14 0.69 0.99 1.48 0.67 0.99 - 583 
0 7.06 0-84 1.00 4.87 0.84 1.00 -9262 
0 2.50 0.81 1.00 1.73 0.81 1.00 -744  

2 2.86 0.71 0.92 2.17 0.63 0.92 1133 

3 2.95 0.76 0.93 1.62 1-05 0.93 - 1223 
0 2.29 0.97 1.00 1-26 1.34 1-00 - 674 
0 1.97 1.19 1.00 1.08 0.87 1-00 -464  

3 2.21 0.58 0.93 2.43 0.54 0-93 - 1525 
0 1.41 0.68 1.00 1.56 1.19 1.00 -484  

2 1.66 0.76 0.92 1.32 0.93 0.92 767 

1 1.49 0.78 0.99 1.08 1.31 0.99 -466  
0 3.92 1.03 1.00 2-83 1.29 1.00 - 4558 
0 1.63 1.01 1.00 1.18 0-96 1-00 - 422 

0 1.22 0.79 0.89 1.35 0.70 0-89 -285  
7 1.05 1.77 1.00 1-16 1.38 1.00 - 185 

1 2.68 1.09 1.00 2.73 0.70 -1 .00  -1631 
0 2.04 0.55 -0 .96 2.08 0-81 0-96 -409  
0 1-71 0.85 0.99 1.75 0.87 0.99 534 

1 1.84 0.75 1.00 1.26 0.56 - 1.00 - 645 

0 2.43 0.67 0.95 1.78 0.68 0-95 - 1391 
6 1.95 1.14 1.00 1.43 0.43 - 1.00 1002 

0 2.07 0.70 0.82 2.54 0.47 0-82 - 1437 
0 2.42 0.75 0.99 2.96 0-60 0-99 - 1893 
4 1.60 0.12 - 1.00 1.97 0.78 1.00 785 

0 2.28 0.66 0.71 1-92 0.78 0-71 -273  
0 4.78 0.67 0.99 4.03 0.75 0.99 -2589 
2* 1.28 0.81 0.92 1.08 0-87 0.92 57 
4 1.90 0.53 1.00 1.60 0.12 - 1.00 277 

1 1.18 0.66 0.97 1.11 0.55 0.97 -131 
1 1.69 0.89 0.76 1.58 0.60 0.76 -485  
1 1.46 0.86 - 1.00 1.36 1.01 1.00 283 
1 1.61 1.17 - 1.00 1.51 1.75 1.00 442 
1 1-26 1.43 1.00 1.18 1.31 1.00 - 194 

1 1-89 1.46 0.96 1.40 1.37 0-96 674 
6 1-46 0.86 - 1.00 1-07 0.56 - 1.00 283 

0 2.59 0.80 0.99 2.04 0.95 0-99 - 1399 
6 1.36 1.01 1.00 1.07 0.56 - 1.00 283 

* IE6x21=0.89< 1-00. See footnote in §2. 
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flections proved to be particularly useful. Fig. l(a) 
shows that not only were the signs of all possible 
pairings among four of the reflections of this type 
strongly determined, but they were also all internally 
consistent. Since the phases of two of these reflections, 
1,11,0 and 1,13,0, were already known, the symbol 0~ 
was assigned the value 7r/2, and 1,21,0 and 1,23,0 could 
be added to the set of reflections with known phase. 
Reflection 560 was also strongly paired to the known 
5,10,0, and knowledge of the value of its phase and of 
the two uuO phases made seven additional phases 
accessible from the ~2 triples, resulting in a total 
number of 15 known hkO phases. The contributors to 
the set of strongly paired uuO reflections of 9c~-fluoro- 
cortisol for which both of the related ~2 triples have A 
values greater than 1 are presented in Table 4, each 
entry in the last column of which is the contributor to 
(2.1) or (2.2) corresponding to the pair of triples in 
that row, and it can be verified that not only are all of 
these individual contributions internally consistent, 
but the predicted cosine seminvariants for the 7.2 
triples are all strongly indicated to be positive. In order 
that the phase assignments which were made for 1,21,0 

1 21 . -- 1 2 3  

(a) 

o( W+ e< 

o 2 2  v-~.......,,,, 

' " "  ~ ~ ~  o 8 7 
• 0.9 ~ "~ 3(6 0 24 3 i ~ 0 , i ~ . ~ ~ "  4.7" 

o,o \ 
4.5 / /  /t~ ~.0 26 3 |  

(b) 

Fig. 1. Pairings among  two groups of  9c~-fluorocortisol reflec- 
tions. Values o f s  [equation (2-3)] are indicated on the arrows, 
and an asterisk indicates that a pair relationship of Type II 
was used. In those cases where the pair formula  gave the 
opposite relationship from the one shown, the s values are 
circled. (a) Pairings among  the uu0 reflections. (b) Pairings 
among  the Ogu reflections. 

and 1,23,0 be incorrect, the cosine seminvariants for 
several of the triples in this group would have to be 
negative, contrary to the entries in Table 4. 

After the values of the phases for eight additional 
hkO reflections were determined by means of calculated 
cosines, cos (~0 I+9,2+q,3), the third origin-specifying 
phase was assigned. Any reflection with l odd (Haupt- 
man & Karle, 1956) would have served this purpose, 
but the 0t12,1 reflection was chosen because it was 
noticed that it would interact well with the hkO phases 
which were already known. Four more phases could 
then be found, and they included the 0,22,1 phase 
which formed part of a set of paired Ogu reflections as 
shown in Table 4 and Fig. l(b). Five of these Ogu re- 
flections (0t10,7; 083; 085; 087; 0,24,3) were strongly 
inter-related and were immediately added to the set of 
reflections with known phase, but conflicts were en- 
countered when three additional reflections (0t26,3; 
063; 043) were considered. For this reason, phases 
were first found for three related Ogg reflections be- 
cause one of these phases, 0,16,2, could be consistently 
obtained from three ~2 triples each of which was 
strongly indicated to have a cosine seminvariant equal 
to unity. After these Ogg phases had been found, the 
remainder of the Ogu reflections under consideration 
were accessible from triples, and their phases, relative 
to the remainder of the Ogu reflections were found to be 
as shown in Fig. l(b). This resulted in contradiction of 
three of the Ogu pair averages [circled in Fig. l(b)] of 
which the most serious violation involved the (043; 
0,26,3) pair. However, the two largest contributors to 
the mildly discrepant (0,6,3; 0,26,3) pair disagreed 
with the overall sum, and the positive calculated 
cosines associated with these contributors, listed in 
Table 4, clearly gave the correct relationship between 
these phases. In addition to the three pair averages 
which are incorrect, two large contributors to the 
(043 ; 0,26,3) pair and a large contributor to each of the 
pairs (063; 0,24,3) and (063; 083) are wrong, and these 
contributors are also shown in Table 4. It can be seen 
that in each case that a cosine seminvariant should 
have been negative, the calculated value, although 
positive, was small, so that there was in fact some 
doubt that the indicated pair relationship (2.1) or 
(2.2) was valid. Furthermore, the evidence for the rela- 
tive Ogu phases being as shown in Fig. l(b) was quite 
strong, and any changes in these phases would have 
resulted in a greater number of violations. 

It may be verified from a consideration of the rules 
for space group P212121 given by Hauptman & Karle 
(1956) that, given the choice of origin-defining reflec- 
tions used in this structure determination (guO, ugO 
and Ogu reflections were used), the enantiomorph can 
be chosen by selecting one of the two possible values 
for a phase of one of the following types: Oug, uOg, gOu, 
and Ouu [e.g. cos (~0gu0+ ~00,g)=0]. Inspection of Table 
3 reveals that 0,15,4 has the highest normalized struc- 
ture factor amplitude of all the reflections in these 
four classes and, in addition, it interacted with many 
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reflections whose  phases were a l ready k n o w n  in triples 
hav ing  wel l -determined cosines. Consequent ly ,  the 
e n a n t i o m o r p h  was fixed by assigning a value of  ~z/2 to 
~00~s4, and  the phases for an  in terre la ted set o f  seven 
add i t iona l  reflections were found  f rom the ~2 triples, 
and  thus the set o f  49 two-d imens iona l  reflections 
which were input  to the tangent  fo rmula  was 
completed.  

A l t h o u g h  the phases o f  reflections 0,11,1, 014, and  
091 were no t  inc luded a m o n g  the 49 phases input  to 
the t angen t  formula ,  cons idera t ion  of  the i n fo rma t ion  
concern ing  these phases which was avai lable  before 
tangent  extension and  ref inement  of  the basis set is 
instructive because the ~2 triples involving these reflec- 
t ions  had  an interest ing re la t ionship  to some o f  the 
pairs. Dur ing  the phas ing  o f  9c~-fluorocortisol, an  
a t t emp t  was made  to de te rmine  phases for blocks of  
re la ted reflections so tha t  there would  be in ternal  
checks on vir tual ly  all phase assignments.  Since it was 
possible to obta in  an adequa te  s tar t ing set wi thou t  
great  difficulty, it was no t  necessary to include less 
reliable phases or phases which did not  help to make  
o ther  phases accessible. The  two-d imens iona l  triples 
involving 0,11,I ,  014, and  091, which have A > 1 and  
]Eh[, IE,,], ] E - h - k l  > 1"3 are listed in Table  5. A l t h o u g h  
9oa~ could  have been found  f rom triple 2, the 
opposi te  ind ica t ion  was given for this phase by triple 1 

i f  it were assumed tha t  the cosine seminvar ian t  for  
this tr iple has a value of  unity.  The values o f  0.70 and  
0.59, calculated for this cosine by the t r ip le-product  and  
M D K S  formulas  respectively, are only sl ightly less 
than  the acceptance limit o f  0.75 used for tr iples with 
A values in the range 2-3. Consequent ly ,  there was un- 
cer ta inty  as to the true phase for 0,11,1. Inspect ion  
o f  Table  5 reveals tha t  two of  the four  triples involving 
0,11,1 which have A values greater  than  1.5, and  which 
have known  phases for  the o ther  two reflections, have 
negative cosines. Three  triples with A values between 
1.0 and  1.5 agree with triples 2 and  5 assuming tha t  
these triples with lower A values have cosine sem- 
invar ian t  values o f  unity.  However ,  confus ion  arises 
because the negative cosines be long to two of  the 
triples with higher  A values, and  nei ther  fo rmula  
gives a definitive negative ind ica t ion  for ei ther  o f  these 
cosines. Unde r  such circumstances,  cons idera t ion  o f  
the internal  re la t ionships  a m o n g  the triples may  be 
helpful.  Table  4 shows tha t  triples 1 and  2 form a large 
con t r ibu to r  to the (043 ; 0,26,3) pair,  and  triples 4 and  5 
form a con t r ibu to r  to the (085; 087) pair. In bo th  
cases, the accepted re la t ionship  between the paired 
reflections requires tha t  the cosines for  these par t icu lar  
con t r ibu tors  have opposi te  signs, and  in bo th  sets o f  
con t r ibu t ing  triples, the triple with a negative cosine 
had  a lower cosine value as calculated by bo th  

Table  5. Two-dimensional triples involving O, 11,1, 014 or 091 which have A > 1 

Serial h k 
1 0 11 1 0 2--6 3 
2 0 11 1 0 4 3 
3 0 11 1 0 2--7 1 
4 0 11 1 0 8 5 
5 0 11 1 0 3 6 
6 0 11 1 0 T 6 
7 0 11 1 0 1--7 2 
8 0 11 1 0 ~ 2 
9 0 1 4 0 18 

10 0 1 4 0 22 l 
11 0 1 4 0 16 
12 0 1 4 0 7 3 
13 0 1 4 0 17 
14 0 1 4 0 1 - - 6 2  
15 0 1 4 0 12 1 
16 0 1 4 0 1--2 1 
17 0 1 4 0 27 1 
18 0 1 4 0 24 
19 0 1 4 0 22 1 
20 0 1 4 0 ~ 1 
21 0 9 1 0 6 3 
22 0 9 1 0 1 - - 6 2  
23 0 9 1 0 2g 3 
24 0 9 1 0 g 5 
25 0 9 1 0 11" 5 
26 0 9 1 0 1" 6 
27 0 9 1 0 ~I 3 
28 0 9 1 0 2--7 1 
29 0 9 1 0 1" 4 
30 0 9 1 0 7 3 
31 0 9 1 0 1 6 
32 0 9 1 0 17 2 

among the set * q'K and ¢P-h-k were both of 49 two-dimensional 

cos (~01. + ~0k + ~0_ i,- ~) 
- h - k  A TPROD MDKS TRUE 

0 15 4 2-73* 0"70 0"59 - 1  
0 ]5 2[ 2"68* 1.09 1"77 1 
0 16 2 1"83 0"62 0"14 1 
0 3 6 1"61" 1"17 0"90 - 1  
0 8 7 1"51" 1"75 1.29 1 
0 ]0 7 1-44" 1.07 0-72 1 
0 6 3 1"22" 1"57 1.84 1 
0 8 ~ 1"09" 0"82 1"27 1 
0 ~ ~ 1.97" 0"78 0.71 1 
0 2~ ~ 1"90 0"41 -0"07 - 1 
0 17 2 1"90" 0"52 0-01 1 
0 8 7 1"63" 0"77 0.97 1 
0 1--g ~ 1"60" 0"12 0.05 - 1  
0 15 ~ 1-51 -0.01 -0"14 - 1  
0 ]3 5 1"36 1"11 1.29 1 
0 11 5 1"32 0"64 0"89 1 
0 26 3 1"26 0.23 -0"69 1 
0 25 2 1"23 0"58 0.35 1 
0 23 5 1"20" 0.81 1"25 1 
0 8 5 1"14 0"87 1'28 1 
0 ]-5 ~ 1"84" 0-75 0"53 1 
0 7 3 1"84" 0-95 0"95 1 
0 14 4 1-57 0"51 0.09 - 1  
0 T i~ 1"46" 0.86 0"27 - 1 
0 2 ~ 1.37 0"99 0-35 - 1  
0 8 7 1"36" 1"01 0.47 1 
0 15 2[ 1"26" 0"56 0-32 - 1  
0 18 2 1"15 0.81 1"89 1 
0 8 5 1"14 0"87 1"28 1 
0 1"i-6 :g 1"08" 0"57 0"20 - 1 
0 1-'0 7 1"07" 0"56 - 0"45 - 1 
0 2---6 ~ 1"01" -0"55 0"08 -1  

phases input to the tangent formula. 
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formulas. However, despite the fact that it now seems 
apparent that the bulk of the evidence indicated that 
<p01~=-n/2, hindsight is always clearer than fore- 
sight, and at the time the initial phases were derived, 
it did not seem as if it was necessary to introduce this 
phase when there was a chance that it might be 
wrong. 

The relationship of the triples involving 014 to the 
pairs is relatively straightforward. The (0,17,2; 0,19,2) 
pair requires that the cosine seminvariants for triples 
9 and 13 have opposite sign, and the (0,16,2; 0,18,2) 
pair places the same requirement on triples 11 and 13. 
Thus, triple 13 probably has a negative cosine since 
the conflicting contributors to both pairs would then 
be resolved, and this conclusion is also favored by the 
triple product and MDKS cosine seminvariant values. 
The pair relationships among the 091 triples are more 
complex and are summarized in Table 6. Here, as in 
the case of the 0,11,1 triples, the triples with cosine 
seminvariant values of unity do have higher calculated 
values from both formulas although the distinction is 
not definitive. Triples 24 and 31 constitute an example 
of the relatively infrequent type of pair contributor 
which gives a correct indication of the relationship 
among the paired phases because both cosine sem- 
invariants are negative. Reflection 091 occurs in many 
more triples having neg~.tive cosines than predicted by 
probability theory when the A values are greater 
than unity. A few reflections of this type occasionally 
occur, but it is wise to verify the intensity of such a 
reflection since it might have been mis-measured. In 
this case, however, the amplitude of the 091 reflection 
had been, in fact, correctly measured. 

Table 6. Relationships among the cosine seminvariants 
for triples involving 091 as indicated by pairs 

Triple 1 Triple 2 cosl*cos2 Paired reflections 
24 26 - 1 0,8,5 ; 0,8,7 
24 29 - 1 0,1,4; 0,1,6 
24 31 + 1 0,8,5; 0,10,7 
26 31 - 1 0,8,7; 0,10,7 

4. Conclusion 

The procedures used to determine an initial set of 49 
phases for the structure of 9a-fluorocortisol have been 
described in detail, and the role in phase determina- 
tion played by the cosines of those structure semin- 
variants, ~01 + ~02, which are linear combinations of two 
phases, has been emphasized. These cosines were 
computed by the recently derived pair formulas 

(Hauptman, 1972b), and these formulas, like the ~j 
formulas, may provide a means for finding the phases 
of one or more reflections which occur in blocks 
which cannot be related to the origin and enantio- 
morph fixing reflections by ~2 type relationships alone. 
In this way, the need for some of the ambiguities 
which are deliberately introduced in the multiple solu- 
tion approach to direct methods may be avoided, and 
in the case of 9a-fluorocortisol no ambiguities were 
necessary. 

The mechanics of the use of the pair formulas have 
been illustrated, and the relationship of these formulas 
to the coincidence method of Grant, Howells & 
Rogers (1957) and to certain ~2 triples has been de- 
monstrated. Examination of the values computed by 
the modified triple-product and MDKS formulas for 
the cosine seminvariants, cos (~01 + ~02 + ~03), of ~2 
triples in these related groups may help to detect cases 
when the phase relationships indicated by the pair 
formulas are incorrect. 

The authors are grateful to Dr W. L. Duax for many 
helpful discussions concerning the application of the 
pair formulas. This research was supported in part by 
U.S.P.H. Grant No. CA 10906. 
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